EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE BY LEARNING FROM MULTI-MODAL DATA FUSION (Record no. 10893)

MARC details
000 -LEADER
fixed length control field 09370nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210s2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0002-8175-4554
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Aya Gamal Ali Ali
245 1# - TITLE STATEMENT
Title EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE BY LEARNING FROM MULTI-MODAL DATA FUSION
Statement of responsibility, etc. /Aya Gamal Ali Ali
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 111p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Dr. Mustafa Elattar
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Acknowledgments.................................................................................................I<br/> Abstract ...............................................................................................................II<br/> List of Figures......................................................................................................V<br/> List of Tables....................................................................................................VII<br/> List of Equations..............................................................................................VIII<br/> List of Abbreviation........................................................................................... IX<br/>1. Introduction ......................................................................................................... 1<br/>1.1Motivation ..................................................................................................... 1<br/>1.2 Problem Statement ........................................................................................ 2<br/>1.3 Thesis Outline and Summary of Contributions .............................................. 4<br/>2. Background ......................................................................................................... 6<br/>2.1Clinical Background ...................................................................................... 6<br/>2.1.1 Alzheimer’s Disease ........................................................................... 6<br/>2.1.2 How Alzheimer’s Disease Affects the Brain........................................ 7<br/>2.1.3 Alzheimer’s Stage Determination and Its Progression....................... 12<br/>2.2 Clinical Diagnosis Assessments ................................................................... 13<br/>2.3 Challenges in Early Detection of Alzheimer’s Disease ................................. 15<br/>2.4 Different Modalities for Diagnosis............................................................... 16<br/>2.4.1 Magnetic Resonance Imaging (MRI)................................................ 16<br/>2.4.2 Positron Emission Tomography (PET).............................................. 18<br/>3. Related Work................................................................................................... 21<br/>3.1 Datasets ...................................................................................................... 21<br/>3.2 Pre-processing Pipeline................................................................................ 22<br/>3.3 Input Management Approaches.................................................................... 27<br/>3.4 Multimodal Data Fusion............................................................................... 28<br/>3.4.1 Fusion Strategies............................................................................. 29<br/>3.4.2 Analysis of Various Modalities in Relevant Studies...................... 30<br/>3.4.3 Challenges with Multi-Modal Approach........................................ 31<br/>3.5 Alzheimer’s disease Diagnosis using Traditional Methods............................ 32<br/>iv<br/>3.6 Alzheimer’s disease Diagnosis using Deep Learning Methods.................. 34<br/>4. Automatic Early Diagnosis of Alzheimer's disease using Structural<br/>MRI Images ...................................................................................................... 40<br/>4.1 Dataset........................................................................................................ 40<br/>4.2 Data preprocessing .................................................................................... 42<br/>4.3 Augmentation ............................................................................................ 43<br/>4.4 3D classification models ............................................................................. 44<br/>4.4.1 3D Convolution neural networks.................................................... 44<br/>4.4.2 Modified 3D DenseNet201 based transfer learning ....................... 44<br/>4.4.3 Vision Transformers........................................................................ 45<br/>4.4.4 Channel and Spatial Attention-based DenseNet ........................... 47<br/>4.5 Evaluation Metrics .................................................................................... 47<br/>4.6 Experiments details and Results............................................................... 49<br/>4.6.1 Dataset and preprocessing setup.................................................... 49<br/>4.6.2 Ablation study ................................................................................ 50<br/>4.6.3 Experimental setting....................................................................... 53<br/>4.7 Discussion................................................................................................... 57<br/>5. Enhancing Early Alzheimer’s Disease Diagnosis through Multimodal<br/>Data Fusion ...................................................................................................... 62<br/>5.1 A Novel Diagnostic Model for Early Detection of Alzheimer’s Disease<br/>Based on Clinical and Neuroimaging Features ......................................... 64<br/>5.1.1 Methodology .................................................................................... 64<br/>5.2 Deep Feature Fusion Framework for Alzheimer’s Disease Staging<br/> using Neuroimaging Modalities................................................................... 75<br/>5.2.1 Methodology .................................................................................... 75<br/>5.2.2 Experiments Setup and Results..................................................... 79<br/>5.2.3 Discussion ........................................................................................ 83<br/>6. Conclusions and Future work .......................................................................... 86<br/>6.1 Conclusion.................................................................................................. 86<br/>6.2 Future directions........................................................................................ 87<br/>Bibliography...........................................................................................................111
520 3# - Abstract
Abstract Abstract:<br/>Alzheimer’s Disease (AD) is a severe neurodegenerative disease. Early <br/>identification of AD is crucial for enhancing the quality of life for both <br/>patients and their families. Unfortunately, most existing diagnostic <br/>techniques rely on subjective assessments of behavioral and cognitive <br/>symptoms, leading to misdiagnosis. In recent years, advances in medical <br/>imaging technology have led to the emergence of neuroimaging-based <br/>methods for the diagnosis of early AD stages. However, these methods <br/>often rely on the analysis of a single modality, which may not capture the <br/>full complexity of the disease. Multimodal data fusion has been proposed <br/>as a promising approach to address this limitation by combining <br/>information from different modalities. Our study is divided into two <br/>phases, each with a distinct focus and methodology. In the initial phase, <br/>our focus is on utilizing structural MRI images as a sole modality for <br/>detecting AD as it is considered one of the most used modalities in AD <br/>diagnosis. A novel methodology is introduced to achieve this objective by <br/>discussing each component necessary to structure the entire system. Our <br/>proposed methodology surpasses previous studies in distinguishing <br/>between individuals with AD and cognitive normal (CN), AD and mild <br/>cognitive impairment (MCI), and MCI and CN, achieving AUC scores of <br/>95.09, 91.28, and 88.42, respectively.<br/>Moving to the second phase, our work is extended to integrate different <br/>modalities. Specifically, we start by incorporating extracted neuroimaging <br/>and clinical features. This method of combining clinical and neuroimaging <br/>features extracted from MRI and PET images yielded superior results, <br/>achieving an AUC score of 97% for classifying between stable and <br/>progressive MCI. Following this, we develop an automated multimodal <br/>system to integrate MRI and PET images at an intermediate level of fusion, <br/>enabling the automatic diagnosis of AD. We achieve an AUC score of <br/>97.67% with an accuracy (ACC) of 95.24% for the AD vs CN task.<br/>Keywords<br/>Alzheimer’s Disease (AD), Multimodal Data Fusion, Neuroimaging Features, 3D<br/>Image Classification, Structural MRI, Positron Emission Tomography, and Automated <br/>Diagnosis.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject informatics
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School informatics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/27/2024   610/A.G.E /2024 08/27/2024 08/27/2024 Thesis