Verification of Machine Learning/Deep Learning Based Pedestrian Detectors (Record no. 10517)

MARC details
000 -LEADER
fixed length control field 09393nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0003-0549-3441
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmed Hosny Abdel-Gawad Ahmed
245 1# - TITLE STATEMENT
Title Verification of Machine Learning/Deep Learning Based Pedestrian Detectors
Statement of responsibility, etc. /Ahmed Hosny Abdel-Gawad Ahmed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 177 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Ahmed G. Radwan
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>1.2 Importance of Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>1.3 Current Challenges and Limitations . . . . . . . . . . . . . . . . . . . . . 9<br/>1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br/>1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>1.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>1.8 Thesis Outline and Summary of Contributions . . . . . . . . . . . . . . . . 15<br/>2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>2.2 Sensors for Environment Perception . . . . . . . . . . . . . . . . . . . . . 18<br/>2.2.1 Visible-light Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br/>2.2.2 Thermal Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br/>2.3 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br/>2.4 Pedestrian Detection Techniques: A Brief History . . . . . . . . . . . . . . 32<br/>2.5 Typical Detection Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>2.5.1 Regions of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>2.5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>2.5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br/>2.6 Deep Learning for Pedestrians Detection . . . . . . . . . . . . . . . . . . . 37<br/>2.7 Deep Learning Architectures for pedestrians Detection . . . . . . . . . . . 41<br/>2.7.1 Two-Stage Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>2.7.2 Single Stage Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 45<br/>2.8 Pedestrians Detection Challenges . . . . . . . . . . . . . . . . . . . . . . . 46<br/>2.8.1 Image Corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>2.8.2 Pedestrian Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>3.1 Baseline Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>ii<br/><br/>3.1.1 Dataset Selection and Preparation . . . . . . . . . . . . . . . . . . 56<br/>3.1.2 Model Selection and Training . . . . . . . . . . . . . . . . . . . . . 59<br/>3.2 Baseline Corruption Robustness . . . . . . . . . . . . . . . . . . . . . . . . 63<br/>3.2.1 Selection of Image Corruptions . . . . . . . . . . . . . . . . . . . . 64<br/>3.2.2 Image Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . 65<br/>3.2.3 Artificial Generation of Corrupted Data . . . . . . . . . . . . . . . 68<br/>3.2.4 Noise corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br/>3.2.5 Blur corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br/>3.2.6 Digital corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br/>3.2.7 Weather corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br/>3.2.8 Baseline Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>3.3 Enhancing Robustness Against Image Corruptions . . . . . . . . . . . . . 79<br/>3.3.1 Robust Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.3.2 Stylized Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br/>3.4 Baseline Occlusion Robustness . . . . . . . . . . . . . . . . . . . . . . . . 84<br/>3.4.1 Naturally Occluded JAAD Dataset . . . . . . . . . . . . . . . . . . 84<br/>3.4.2 Baseline Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br/>3.5 Enhancing Robustness Against Pedestrian Occlusion . . . . . . . . . . . . 85<br/>3.5.1 Artificial Generation of Occluded Datasets . . . . . . . . . . . . . . 86<br/>3.5.2 Occluded Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br/>4. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br/>4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br/>4.1.1 Detection Performance Metrics . . . . . . . . . . . . . . . . . . . . 89<br/>4.1.2 Corruption Robustness Evaluation Metrics . . . . . . . . . . . . . . 91<br/>4.1.3 Occlusion Robustness Evaluation Metrics . . . . . . . . . . . . . . 92<br/>4.1.4 Computational Efficiency: Inference Time . . . . . . . . . . . . . . 94<br/>4.2 Baseline Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br/>4.2.1 Performance on Corrupted Dataset . . . . . . . . . . . . . . . . . . 96<br/>4.2.2 Performance on Occluded Dataset . . . . . . . . . . . . . . . . . . 106<br/>4.3 Enhancing Corruption Robustness through Robust Training . . . . . . . . 110<br/>4.3.1 Training with All Corruptions as Augmentations . . . . . . . . . . 111<br/>4.3.2 Training on Each Category Alone . . . . . . . . . . . . . . . . . . . 120<br/>4.4 Enhancing Corruption Robustness through Stylized Training . . . . . . . . 131<br/>4.4.1 Training on Stylized data only . . . . . . . . . . . . . . . . . . . . 131<br/>4.4.2 Training on both Clean and Stylized data combined . . . . . . . . 139<br/>4.5 Enhancing Occlusion Robustness through Occluded Training . . . . . . . . 148<br/>5. Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br/>5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br/>5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br/>Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
520 3# - Abstract
Abstract Abstract:<br/>In the context of assisted and automated driving vehicles and advanced driver-assistance<br/>systems underscores the critical need for accurate pedestrian detection to ensure road safety.<br/>However, deploying pedestrian detection models in real-world scenarios poses a significant<br/>challenge due to image corruptions and partial occlusions. This thesis addresses these challenges through the development and evaluation of robust, stylized, and occluded training<br/>techniques.<br/>Robust Training incorporates intentionally generated corrupted examples during model<br/>training to simulate real-world challenges. Results demonstrate significant improvements<br/>in model robustness to various corruption types. Further refinement through categorized<br/>training data emphasizes the potential benefits of tailored augmentation to specific corruption<br/>profiles.<br/>Stylized Training leverages the Adaptive Instance Normalization (AdaIN) method to introduce variations in texture and style, enriching the training dataset. Empirical results showcase a substantial improvement in pedestrian detection accuracy, particularly in mean Average Precision (mAP50) on clean data. Stylized training significantly enhances the model’s<br/>robustness in adverse conditions, demonstrating proficiency in handling noise, blur, digital,<br/>and weather-related distortions.<br/>Occluded Training introduces a novel methodology for generating occluded datasets, simulating scenarios with varying levels of occlusion. The augmented training approach leads to<br/>a substantial enhancement in performance when faced with occluded scenarios. Specifically,<br/>the model exhibits a ∼2% increase in mean Average Precision (mAP50) on both partially and<br/>fully occluded samples compared to standard training. This underscores the effectiveness of<br/>occlusion training in fortifying the model’s performance in occluded real-world scenarios.<br/>The utilization of robust, stylized, and occluded training techniques significantly advances the<br/>adaptability and performance of pedestrian detection models in diverse real-world conditions<br/>and corruption scenarios, with an improvement of ∼2-4%. These findings establish a robust<br/>foundation for deploying pedestrian detection models in complex environments, ensuring<br/>safer and more reliable assisted and automated driving systems. This thesis contributes<br/>to the forefront of pedestrian detection, underscoring the efficacy of tailored augmentation<br/>strategies for model robustness in dynamic real-world environments.<br/>Keywords— Assisted and Automated Vehicles, Pedestrian Detection, Image Corruptions, Robust<br/>Training, Stylized Training, Occluded Training, Model Robustness<br/>
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject MSD
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School MSD
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 317
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 317
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 07/25/2024   621/A.H.V/2024 07/25/2024 07/25/2024 Thesis