Fractional Calculus Based Image Simplification Algorithm For Medical applications (Record no. 10292)

MARC details
000 -LEADER
fixed length control field 07722nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Source of number or code ORCID
Standard number or code 0000-0002-7567-6203
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Alaa AbdAlrhman Mohammed
245 1# - TITLE STATEMENT
Title Fractional Calculus Based Image Simplification Algorithm For Medical applications
Statement of responsibility, etc. /Alaa AbdAlrhman Mohammed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Ahmed G. Radwan
502 ## - Dissertation Note
Dissertation type Thesis (MS.c)—Nile University, Egypt, 2024.
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents: Contents Page<br/>V<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII<br/>List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XX<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX<br/>Acknowledgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII<br/>Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2. Thesis Motivation and Concepts of Review . . . . . . . . . . . . . . . . 5<br/>2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2.2 Fractional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.2.1 Fractional Operator based on GL definition . . . . . . . . . 8<br/>2.2.2 Fractional Operator based on RL Definition . . . . . . . . . 10<br/>2.2.3 Fractional Operator Based on Deformable Definition . . . . 13<br/>2.3 Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br/>2.3.1 Fractional Kernels . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.4 Anisotropic Diffusion Filters . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.4.1 Hardware Implementation of Anisotropic Filters on FPGA<br/>Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>2.4.2 Pixel buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br/>2.4.3 Kernel convolution . . . . . . . . . . . . . . . . . . . . . . . 28<br/>2.4.4 G function . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/><br/>3. New Implementation of GL-based Fractional Operator. 28<br/>3.1 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>3.1.1 Average fixed window optimization method . . . . . . . . . . 28<br/>3.1.2 Optimum α method . . . . . . . . . . . . . . . . . . . . . . . 29<br/>3.1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 30<br/>3.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>3.2 An Improved Approximation of GL Fractional Integral . . . . . . . . 33<br/>3.2.1 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . 33<br/>3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>3.2.3 Fixed window method . . . . . . . . . . . . . . . . . . . . . . 35<br/>3.2.4 Quadratic approximation method . . . . . . . . . . . . . . . . 35<br/>3.2.5 PWL approximation method . . . . . . . . . . . . . . . . . . . 36<br/>3.2.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 38<br/>3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>4. Hardware Accelerator of Fractional-order Derivative/Integral Operator based on Phase Optimized Filters with Applications 41<br/>4.1 Filters Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>4.1.1 Proposed Phase Optimized FIR . . . . . . . . . . . . . . . . . 41<br/>VI<br/>4.1.2 Proposed Phase Optimized IIR . . . . . . . . . . . . . . . . . 44<br/>4.2 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/><br/>4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>4.4.1 Heaviside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.4.2 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>5. Application: Fractional based Image Processing 56<br/>5.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>5.2 Fractional Image Enhancement . . . . . . . . . . . . . . . . . . . . . 57<br/>5.2.1 Double Fractional Kernel System . . . . . . . . . . . . . . . . 57<br/>5.2.2 Fractional Kernels Optimization . . . . . . . . . . . . . . . . . 58<br/>5.2.3 Single fractional kernels optimization . . . . . . . . . . . . . . 59<br/>5.2.4 Double fractional kernels system optimization . . . . . . . . . 61<br/>5.2.5 Constrained Double Optimization . . . . . . . . . . . . . . . . 62<br/>5.3 Fractional Anisotropic Diffusion Filter . . . . . . . . . . . . . . . . . 66<br/>5.3.1 Fractional Gradient Operator . . . . . . . . . . . . . . . . . . 67<br/>5.3.2 Anisotropic Filter Design . . . . . . . . . . . . . . . . . . . . . 68<br/>5.3.3 Optimizing Fractional Anisotropic Filter . . . . . . . . . . . . 72<br/>5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br/>5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>6. Conclusion and Future Work 79<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>VII<br/>Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br/>Appendices:<br/>A. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
520 3# - Abstract
Abstract Abstract: Fractional calculus is a powerful mathematical tool used to describe complex systems in physics, engineering, and finance. However, implementing fractional order<br/>systems in hardware can be resource-intensive, requiring large amounts of memory<br/>and processing power. Field programmable gate arrays (FPGAs) provide a platform<br/>for implementing fractional order systems that can conduct logic in parallel, resulting<br/>in faster and more efficient processing.<br/>This thesis proposes three new fractional order implementation methods that improve accuracy and reduce resource requirements. The results show that the proposed<br/>methods offer significant improvements in accuracy, power, latency, memory-units usage and DSPs compared to traditional methods. This thesis also proposes a soft IP<br/>library for different fractional operators implementation methods that can be included<br/>in FPGA different applications. In addition to exploring new implementation methods, this thesis investigates the use of fractional calculus in image enhancement and<br/>image simplification. The proposed methods are evaluated using metrics such as peak<br/>signal-to-noise ratio (PSNR) and the average gradient metric (AG) to determine their<br/>effectiveness.<br/>Overall, this thesis makes significant contributions to the field of fractional calculus, that can be of value in many fields. The proposed implementation methods and<br/><br/>X<br/>image processing techniques can be used in a wide range of applications, including<br/>control systems, signal processing, and image processing.<br/>Keywords<br/>Fractional Calculus, FPGA, Matlab, Image Processing, Portable Devices, Anisotropic<br/>Filters, Grünwald–Letnikov, GA, FPA
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject MSD
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School MSD
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 317
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 317
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 02/28/2024   621/A.M.F/2024 02/28/2024 02/28/2024 Thesis