BENCHMARKING SEVERAL CLUSTERING AND DENOISING APPROACHES FOR OTUs/ASVs INFERENCE FROM AMPLICON BASED SEQUENCING/ (Record no. 10258)

MARC details
000 -LEADER
fixed length control field 04028nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2023 a|||f bm|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mohamed Omar Moawad Fares
245 1# - TITLE STATEMENT
Title BENCHMARKING SEVERAL CLUSTERING AND DENOISING APPROACHES FOR OTUs/ASVs INFERENCE FROM AMPLICON BASED SEQUENCING/
Statement of responsibility, etc. Mohamed Omar Moawad Fares
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2023
300 ## - PHYSICAL DESCRIPTION
Extent 74 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed El-Helw
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2023 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Dedication................................................................................................................... iii<br/>Acknowledgments....................................................................................................... iv<br/>List of Tables .............................................................................................................. vi<br/>List of Figures............................................................................................................ vii<br/>Abstract..................................................................................................................... viii<br/>Introduction................................................................................................................... 1<br/>Background .................................................................................................................. 4<br/>Methods ...................................................................................................................... 18<br/>Results......................................................................................................................... 32<br/>Discussion................................................................................................................... 44<br/>References................................................................................................................... 53
520 3# - Abstract
Abstract Abstract:<br/>Amplicon sequencing is an indispensable tool for microbiome studies <br/>needed to unravel the taxonomical composition and relative abundance of <br/>microbial community. Yet, several artifacts are introduced at different <br/>processing steps, including sequencing errors necessitating the use of <br/>computational methods to eliminate those errors. Distance-based <br/>clustering into operational taxonomic units (OTUs) and sequence reads <br/>denoising into Amplicon Sequence Variants (ASVs) are two main <br/>approaches to handle this issue. Varying experimental setups and complex <br/>pipeline parameters have hindered unbiased comparisons between <br/>different approaches, resulting in divergent findings across separate <br/>studies. In this study, we aimed to conduct a comprehensive benchmarking <br/>analysis via an unbiased head-to-head comparison of eight different <br/>clustering and denoising algorithms by using a collection of various mocks <br/>from the Mockrobiota database. Using unified preprocessing steps for <br/>quality filtering and chimera removal, a fair comparison between DADA2, <br/>Deblur, MED, UNOISE3, UPARSE, DGC, Average neighborhood and <br/>Opticlust was conducted. DADA2 and UPARSE were the most efficient<br/>algorithms, producing comparable results in terms of overall error rate, <br/>percentage of exact matches to the mock reference and percentage of <br/>taxonomical over-splitting and over-merging. These results suggest that at <br/>the same level of quality preprocessing, sequence abundance filtering and <br/>chimera detection parameters, OTU clustering and ASV denoising <br/>produce comparable results with minor approach-dependent traits.<br/>Keywords: Amplicon Sequence Analysis, Denoising, Clustering, <br/>OTU, ASV, Benchmarking
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 10/15/2023   610/ M.F.B /2023 10/15/2023 10/15/2023 Thesis