A MACHINE LEARNING-BASED INTRUSION DETECTION SYSTEM FOR IOT ELECTRIC VEHICLE CHARGING STATIONS (EVCS)/ (Record no. 10038)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 08043nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 201210b2023 a|||f bm|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | EG-CaNU |
| Transcribing agency | EG-CaNU |
| 041 0# - Language Code | |
| Language code of text | eng |
| Language code of abstract | eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 658 |
| 100 0# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Mohamed Ahmed Hassan ElKashlan |
| 245 1# - TITLE STATEMENT | |
| Title | A MACHINE LEARNING-BASED INTRUSION DETECTION SYSTEM FOR IOT ELECTRIC VEHICLE CHARGING STATIONS (EVCS)/ |
| Statement of responsibility, etc. | Mohamed Ahmed Hassan ElKashlan |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
| Date of publication, distribution, etc. | 2023 |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 68 p. |
| Other physical details | ill. |
| Dimensions | 21 cm. |
| 500 ## - GENERAL NOTE | |
| Materials specified | Supervisor: <br/>Heba Aslan |
| 502 ## - Dissertation Note | |
| Dissertation type | Thesis (M.A.)—Nile University, Egypt, 2023 . |
| 504 ## - Bibliography | |
| Bibliography | "Includes bibliographical references" |
| 505 0# - Contents | |
| Formatted contents note | Contents:<br/>Contents<br/>CERTIFICATION OF APPROVAL.................................................................................iii<br/>DEDICATION.................................................................................................................. vii<br/>ACKNOWLEDGEMENTS............................................................................................... ix<br/>TABLE OF CONTENTS................................................................................................... xi<br/>LIST OF FIGURES ......................................................................................................... xiii<br/>LIST OF TABLES............................................................................................................ xv<br/>ACRONYMS.................................................................................................................. xvii<br/>PUBLICATIONS............................................................................................................. xix<br/>ABSTRACT..................................................................................................................... xxi<br/>CHAPTER 1 INTRODUCTION ........................................................................................ 1<br/>1.1 Introduction....................................................................................................1<br/>1.2 Problem definition .........................................................................................2<br/>1.3 Motivation......................................................................................................4<br/>1.4 Intrusion detection in IoT...............................................................................5<br/>1.5 Thesis Contributions......................................................................................7<br/>CHAPTER 2 BACKGROUND .......................................................................................... 8<br/>2.1 EVCS background .........................................................................................8<br/>2.2.1 Attacks on the EVCS ................................................................................10<br/>2.2.2 Users’ Attacks...........................................................................................11<br/>xii<br/>2.2.3 Power Grid Attacks...................................................................................12<br/>2.3 EVCS and IoT..............................................................................................14<br/>CHAPTER 3 RELATED WORK..................................................................................... 19<br/>3.1 Related Research..........................................................................................19<br/>3.2 Literature review..........................................................................................20<br/>CHAPTER 4 METHODOLOGY ..................................................................................... 31<br/>4.1. Introduction.................................................................................................31<br/>4.2. Dataset description......................................................................................33<br/>4.3. IoT-23 Dataset ............................................................................................33<br/>4.4. Selected features .........................................................................................35<br/>4.5. Machine Learning Classifiers.....................................................................41<br/>4.6. Experimental setup......................................................................................48<br/>CHAPTER 5 SIMULATION ........................................................................................... 51<br/>5.1 Evaluation Metrics.......................................................................................51<br/>5.1.1 Confusion matrix ......................................................................................51<br/>5.1.2 Precision....................................................................................................52<br/>5.1.3 Accuracy ...................................................................................................52<br/>5.1.4 Recall Score ..............................................................................................52<br/>5.1.5 F-1 Score...................................................................................................52<br/>5.2. Experimental Results..................................................................................53<br/>5.2.1 Binary Classification results.....................................................................55<br/>5.2.2 Multiclass classification results ................................................................57<br/>CHAPTER 6 CONCLUSION AND FUTURE WORK ................................................... 62<br/>6.1 Discussion and Limitations..........................................................................62<br/>6.2 Conclusion and Future Work.......................................................................64<br/>REFERENCES ................................................................................................................. 65 |
| 520 3# - Abstract | |
| Abstract | Abstract:<br/>The market for Electric Vehicles (EVs) has expanded tremendously as seen in the <br/>recent Conference of the Parties 27 (COP27) held at Sharm El Sheikh, Egypt in <br/>November 2022. This needs the creation of an ecosystem that is user-friendly and <br/>secure. Internet connected Electric Vehicle Charging Stations (EVCSs) provide <br/>rich user experience and add-on services. Eventually, the EVCSs are connected to <br/>a management system, which is the Electric Vehicle Charging Station <br/>Management System (EVCSMS). Attacking the EVCS ecosystem is rising at the <br/>same rate as those of physical attacks and vandalism happening on the physical <br/>EVCSs. The cyberattack is more severe than the physical attack as it may affect <br/>thousands of EVCSs at the same time. Intrusion Detection is vital in defending <br/>against diverse types of attacks and unauthorized activities. Fundamentally, the <br/>Intrusion Detection System’s (IDS) problem is a classification problem. The IDS <br/>tries to find out if each traffic stream is legitimate or malicious. Furthermore, the <br/>IDS can identify the type of malicious traffic. In this study, we address IoT <br/>security issues in EVCS, by using different machine learning techniques that were <br/>created to address other, non-IoT security challenges. We also compare different <br/>machine learning classifier algorithms for detecting different kinds of attacks in <br/>the EVCS network environment. A typical Internet of Things (IoT) dataset <br/>obtained from actual IoT traffic is used in the study. We compare classification <br/>algorithms that are used in the Intrusion detection systems that are placed inline to <br/>xxii<br/>the traffic. This traffic contains different types of attacks targeting the EVCS <br/>network. The results obtained from this research improve the stability of the <br/>EVCS system and significantly reduce the amount of cyberattacks that could <br/>disrupt the daily life activities associated with the EVCS ecosystem |
| 546 ## - Language Note | |
| Language Note | Text in English, abstracts in English. |
| 650 #4 - Subject | |
| Subject | Information Security |
| 655 #7 - Index Term-Genre/Form | |
| Source of term | NULIB |
| focus term | Dissertation, Academic |
| 690 ## - Subject | |
| School | Information Security |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | Thesis |
| 650 #4 - Subject | |
| -- | 294 |
| 655 #7 - Index Term-Genre/Form | |
| -- | 187 |
| 690 ## - Subject | |
| -- | 294 |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Main library | Main library | 06/05/2023 | 658 /M.E.M / 2023 | 06/05/2023 | 06/05/2023 | Thesis |